
An Integrated Modeling and Simulation Methodology
for Intelligent Systems Design and Testing

Xiaolin Hu and Bernard P. Zeigler

Arizona Center for Integrative Modeling and Simulation
The University of Arizona
Tucson, AZ, USA 85721
www.acims.arizona.edu

ABSTRACT

Model continuity refers to the ability to use the same model of a
system throughout its design phases. For intelligent systems, we
can restrict such continuity to the intelligent control
components, and more specifically, the models that implement
the system’s decision making. behavior. In this paper, we
show how a modeling and simulation environment, based on the
DEVS formalism,, can support model continuity in the design
of intelligent systems. For robotic systems, such continuity
allows design and testing of the same control logic model
through the phases including logical simulation, real-time
simulation and actual execution.

KEYWORDS: Model Continuity, Modeling, Simulation,
Experimental Frame, Real Time Systems, Intelligent Systems,
DEVS

1. INTRODUCTION
One criterion for intelligence is the ability to make
decisions in a timely manner. Certainly for systems
expected to interact with the real world, such as robotic
systems, real time constraints play a major role, although
they may vary in stringency for different behaviors. With
the rapid advance in processor speed, memory capacity,
sensors and actuators, and dramatic increases in network
technology, intelligence has a natural association with
distributed systems, as exemplified by multi-agent
systems. Unfortunately, the lack of good design methods
and support tools has made software development for
intelligent systems a bottleneck. To address the
importance and complexity of real time software
development, academic and commercial tool developers
have proposed various real time software models and
methods that represent different emphases on this
problem. However, so far none of them fits very well to
support real time software from a systematic way. A
formal methodology is needed for real-time software

development [1, 2]. The method should support software
development for intelligent systems including designing,
testing and execution in a systematic way, with a
framework to integrate a system’s behavior, structure and
timeliness together.

In this paper, we describe an approach to develop
real time software for intelligent systems. This approach
is based on DEVS modeling and simulation framework
[3]. Corresponding to the general “Design—Test—
Execute” development procedure, our approach provides
a “Modeling—Simulation—Execution” methodology
which includes several stages to develop real time
software. In the modeling stage, Atomic and Coupled
models are built to capture a system’s behavioral and
structural properties. In the simulation stage, a series of
simulators is chosen to simulate and test model’s
behavior in an incremental fashion step. In the execution
stage, the verified model is executed by real-time
execution engine. It is important to point out that during
the whole process, we maintain model continuity because
the same model that has been designed will be simulated
and then executed. For distributed systems, this
continuity also means the coupling among the models is
maintained even though the models are executed in a
distributed environment. We believe keeping model’s
continuity is an efficient way to manage software’s
complexity and consistency. With model’s continuity, we
are confident that the system in operation is the system
we wanted to design and will carry out the functions as
tested by simulation.

This paper will start with the description of the
methodology for a stand-alone real time system. Then it
will scale up to distributed real time systems. For both
systems, step-wise simulation methods are provided to
simulate and exercise the model under test. Finally, we
describe how experimental frame, a more general testing
environment, can be integrated to test the model of
interest while still preserving model continuity.

2. MODELING, SIMULATION AND
MODEL CONTINUITY

Intelligent real time systems monitor, respond to, or
control, an external environment. This environment is
connected to the digital logic through sensors, actuators,
and other input-output interfaces [4]. A real time system
from this point of view consists of sensors, actuators and
the real time control and information-processing unit. For
simplicity, we will call this last one the control model.
The sensors get inputs from the real environment and
feed them to the control model. The actuators get
commands from the control model and perform
corresponding actions to affect the real environment. The
control unit processes the input from sensors and makes
decisions based on its control logic. Depending on the
complexity of the system, the control model could have
only one central component or it could have multiple
parallel-processing subcomponents, which in turn may
have their own sub-control units.

Once we establish this view of a real time system as
shown on the left side of Figure 1, we can model it easily.
In our approach, sensors and actuators are modeled as
DEVS Activities, which is a concept introduced by RT-
DEVS for real time system specification [5]. A DEVS
Activity can be any kind of computer task. However, in
the context of this paper, we only consider the
sensor/actuator Activities. The control unit is modeled as
a control model which might has a set of subcomponents.
These subcomponents are coupled together so they can
communicate and cooperate. With this approach, the
control model acts as the brain to process data and make
decisions. It could be a simple Atomic model or a
complex hierarchical coupled model. Sensor/actuator
Activities act as hardware interfaces providing a set of
APIs for the control model to use. They are essentially
hardware drivers for sensors and actuators. How to define
an Activity and its APIs is dependent on how the designer
delineates the “Control Model—Activity” boundary. For
example, we can model a sensor module that may have
its own control logic as a sensor Activity. Or we can also
include that part of logic into our control model and only
model the sensor hardware as an Activity. The clear
separation between control model and activity’s functions
makes it possible for the designer to focus on his design
interest. In the context of intelligent real time systems,
the control logic is typically very complex, as the system
usually operates in a dynamic, uncertain or even hostile
environment. As such, the control model is the main
interest of design and testing. In our approach, simulation
methods are applied to test the correctness and efficiency
of this model. Tne continuity of this model is also
emphasized during the whole process of the
methodology.

Before simulating the control model, we need to

model the real environment as an environment model.
This environment model is a reflection of how the real
environment affects or is affected by the system under
design. Meanwhile, a “simulated” sensor/actuator
hardware interface is also needed for the control model to
talk to the environment model. This is why we introduce
the SimActivity concept. In contrast to an Activity, which
drives real hardware and is actually being executed, a
SimActivity imitates an Activity’s interface/behavior and

Figure 1: Modeling, Simulation and Execution
of Non-distributed Real Time System

is only used during simulation. A sensor SimActivity gets
input from the environment model just as a sensor
Activity gets input from the real environment. An
actuator SimActivity does similar things as an actuator
Activity too. Note that it is important for an Activity and
its SimActivity to have the same interfaces, which are
used by the control model in both simulation and real
execution. By imposing this restriction, the control model
can be kept unchanged in the transition from simulation
to execution (it interacts with the environment model and
real environment using the same interfaces). Thus, model
continuity is achieved.

As shown in the center of Figure 1, in the modeling
stage, a simulated system is developed based on the real
system. With this system, different simulation strategies
can be applied to validate the control model. In DEVS,
there is a clear separation between a model and its
simulators, which gives us the flexibility to choose
different simulators to simulate the same model. These
simulators include fast-mode simulator, real-time
simulator and distributed simulators. With these
simulators, a model can be simulated and tested
incrementally before its real execution. During the
simulation stage, employing fast-mode (or logical time)
simulators, if we find the simulated result is not what we

Real time Control
and Information

Processing

Sensors Actuators

Real Environment Environment Model Real Environment

Sensor
SimActivities

Sensor
Activities

Actuator
SimActivities

Actuator
Activities

Real System Simulation &
Verification ExecutionModeling Mapping

Real Time Models

M2 M3

M1

Real Time Models

M2 M3

M1

Real Time Models

M2 M3

M1

Real Time Models

M2 M3

M1

expected, the model can be revised and then re-simulated.
This “modeling-simulation-revising” cycle repeates until
we are satisfied with simulation result or nothing more
can be learned in the simulation stage. A more detailed
description of how to choose and use different simulators
is given in the next section.

After the model is validated through simulations, it
will be mapped to the real hardware for execution. For a
non-distributed application, this mapping is the “Activity
Mapping” to associate the sensor/actuator Activities to
the corresponding sensor/actuators hardware. For a
distributed application, an extra “Model Mapping” is
needed to map a set of cooperative models to a set of
networked nodes. By associating the models and
Activities to their corresponding hardware, the system
can be executed in a real environment. In execution, the
control logic is governed by the control model, which has
been validated in the step-wise simulation. If true model
continuity from simulation to execution has been
achieved, this control model will carry out the control
logic just the same as it did when simulated. In practice,
one may not be able to completely replicate the real
environment in the environment model, and there will be
potential for design problems to surface in real execution.
When this happens, re-iteration through the stages can be
more easily achieved with the model continuity approach.

3. STEP-WISE SIMULATION AND
TESTING

Simulation technology has been widely applied to help to
design and test real time systems. This technology
provides a valuable tool for engineers to test and
understand the system under design. When the
complexity of a problem is too large to allow an
analytical solution, simulation is the only option to
investigate system configurations or operational modes
prior to the implementation in the field. In this section,
we will show how different simulation methods can be
applied to incrementally simulate and test a stand-alone
system. Simulations for distributed systems will be
shown in section 5.

As shown in step 1 of Figure 2, for a stand-alone
system, three different simulation steps can be applied to
test the model. They are fast-mode simulation, real-time
simulation and hardware-in-the-loop simulation. These
simulation methods apply different simulation
configurations to test different aspects of the model under
test.

Figure 2: Step-wise Simulations of Non-
distributed Real Time System

In fast-mode simulation, the control model is

configured to talk to the environment model through
sensor/actuator SimActivities. These models stay in one
computer and a DEVS fast-mode simulator is chosen to
simulate them. In fast-mode simulation, the flow of time
is logical (not connected to a wall-clock). So, a fast-
mode simulator generates simulation results as fast as it
can. Based on these results, we can analyze the data to
see if the system under test fulfills the logical behavior as
desired.

Just as fast-mode simulation verifies a model’s

logical behavior, real-time simulation verifies model’s
temporal behavior. In real time simulation, the model’s
setting is the same as in fast-mode simulation. However,
the fast-mode simulator is replaced by a real-time
simulator, which executes the model at the same speed as
a real world clock. Since the simulation runs in real time,
we can test a model’s temporal behavior such as checking
if critical deadlines can be met.

In fast-mode and real-time simulations, the model
under test and the simulators reside in one computer. This
computer is not the same computer as the one in which
the model will actually be executed. Instead, a simulated
environment is provided. However, not all components in
a complex system can be modeled in adequate detail in
computer simulation. Sometimes, the executing hardware
can have significant impact on haw well a model’s
functions can be carried out. For example, processor
speed and memory capacity are two typical factors that
can affect the performance of an execution. Thus, to
make sure that the control model, having been validated
in fast-mode and in real-time simulation, also can
execute correctly in the real hardware, we adopt the
hardware-in-the-loop (HIL) simulation [6,7]. As shown in
step 3 of Figure 2, in HIL simulation, the environment
model is simulated by a DEVS real time simulator on one

Control
Models SimActivity

Environment
Model

DEVS Fast-Mode Simulator

Step 1: Fast-mode Simulation:
Verify Model Logical Behavior

Control
Models SimActivitySimActivity

Environment
Model

Environment
Model

DEVS Fast-Mode Simulator

Step 1: Fast-mode Simulation:
Verify Model Logical Behavior

Control
Models SimActivity

Environment
Model

DEVS Real-Time Simulator

Step 2: Real-time Simulation:
Verify Model Temporal Behavior

Control
Models SimActivitySimActivity

Environment
Model

Environment
Model

DEVS Real-Time Simulator

Step 2: Real-time Simulation:
Verify Model Temporal Behavior

Control
Models Real

Environment
DEVS Real-Time
Execution Engine

Step 4: Real Execution:
Interact with Real World

Activity
Control
Models Real

Environment
DEVS Real-Time
Execution Engine

Step 4: Real Execution:
Interact with Real World

ActivityActivity

Control
Models SimActivity

Environment
Model

DEVS Real-
Time Simulator

DEVS Real-Time
Execution Engine

Step 3: Hardware-in-the-Loop Simulation:
Test Model in Real Hardware

Real
Environment

Activity
Control
Models SimActivitySimActivity

Environment
Model

Environment
Model

DEVS Real-
Time Simulator

DEVS Real-Time
Execution Engine
DEVS Real-Time
Execution Engine

Step 3: Hardware-in-the-Loop Simulation:
Test Model in Real Hardware

Real
Environment

ActivityActivity

computer. The control model under test is executed by
DEVS real-time execution engine on the real hardware.
This DEVS real-time execution engine is a stripped-down
version of DEVS real-time simulator. It provides a
compact and high-performance runtime environment to
execute DEVS models. In HIL simulation, the model
under test interacts with the environment model through
SimActivities. These SimActivities act as simulated
sensors or actuators. Real sensors or actuators can also be
included into HIL simulation by using sensor/actuator
Activities. The decision of which sensor/actuator will be
real hardware and which sensor/actuator will be
simulated SimActivities is dependent on the test
engineer’s testing objectives. With different testing
objectives, different combinations of real sensor/actuators
and simulated sensor/actuators can be chosen to conduct
an exhaustive test of the control model. Notice that in
HIL simulation, as the control model and environment
model stay on different computers, a bi-directional
connection must be established between the two
computers. We use LAN connection based on TCP/IP
protocol because it is widely used in industry, can sustain
high-speed data transfer, and very portable. This
connection is taken care of by DEVS real-time simulator
and execution engine so it is transparent to the model.

Once we passed hardware-in-the-loop simulation, we
are ready to leave the simulation stage for execution
stage. As shown in step 4 of Figure 2, in real execution,
DEVS real-time execution engine executes the control
model. There is no environment model because the
control model will interact with the real environment
through the sensor/actuator Activities.

4. DISTRIBUTED REAL TIME SYSTEMS
With the advance of network technology, distributed real
time systems are playing more and more important roles.
Figure 3 shows an example distributed system with three
nodes. Generally speaking, a distributed real time system
consists of a set of subsystems. Like a stand-along
system, each subsystem has its own control and
information processing unit and it interacts with the real
environment through Sensor/Actuators. However, these
subsystems are not “along”. They are physically
connected by network and logically they talk to each
other and cooperate to finish a common task. Distributed
real time systems are much harder to designed and tested
because one subsystem’s behaviors may affect one or all
of other subsystems. These subsystems influence each
other not only by explicit communications, but also by
implicit environment change as they all share the same
environment. For example, in Figure 3, if Node 1 changes
the environment through its actuators, this change will be
seen by the sensors of Node 2, thus affects Node 2’s

decision making. With this kind of influence property,
it’s not practical to design and test each subsystem
separately and then put them together. Instead, the system
as a whole needs to be designed and tested.

Figure 3: Modeling, Simulation and Execution
of Distributed Real Time System

In our approach, a distributed real time system is

modeled as a coupled model. This coupled model
consists several subcomponents. Each subcomponent is
corresponding to a subsystem of the distributed real time
system. As described in section 2, these subsystems are
also modeled as DEVS models, which consist of control
model and sensor/actuator Activities. The control model
of each subsystem interacts with the real world through
sensor/actuator Activities. These subsystem models are
coupled together (by connect one model’s output port to
another model’s input port) so they can communicate.
The coupling among the models is corresponding to the
connection among the subsystems in the real world.

To test the models of distributed real time systems,
simulation methods are applied in our approach. For the
purpose of simulation, environment model and
sensor/actuator SimActivities are developed to simulate
the real environment and sensor/actuator Activities. An
Activity and its corresponding SimActivity share the
same interfaces so the model using them can keep
unchanged from simulation stage to execution stage.
Different simulation methods can be applied to simulate
and test the models incrementally. These simulation
methods include centralized fast-mode and real-time
simulation, distributed real-time simulation and
hardware-in-the-loop (HIL) simulation. A more detailed
description will be given in the next section. Note that
each subcomponent can also be tested/simulated
independently because DEVS has a well-defined concept
of system modularity.

After the models are validated by simulations, they
are mapped to the real hardware for execution. Similar to
a stand-alone system, each subsystem needs to conduct
an “Activity Mapping” to associate the sensor/actuator
Activities to the corresponding sensor/actuator hardware.
In addition, as the models are actually executed on
different network computers, a “Model Mapping” is

Node1

Real Environment

Real System Simulation &
Verification ExecutionModeling Mapping

Sensor/
Actuator

Node2

Sensor/
Actuator

Node3

Sensor/
Actuator

Network Connection

Model1

Environment Model

Sim
Activity

Sim
Activity

Sim
Activity

Model Coupling

Node1
(Model1)

Real Environment

Activity Activity Activity

Model Coupling over Network

Model2 Model3
Node2

(Model2)
Node3

(Model3)

needed to map the models to their corresponding host
computers. These computers are physically connected by
the network and they execute the models that are
logically coupled together by DEVS coupling. To govern
this mapping, a prototype Model Mapping Specification
has been developed, which will map the models to their
network nodes, while maintaining the coupling among
them. As such, model continuity for distributed real time
systems means not only the control model of each
subsystem remain unchanged but also the coupling
among the component models is maintained from the
simulation to distributed execution.

In real execution, the control model of each
subsystem makes decisions based on its control logic. It
interacts with the real environment through
sensor/actuator Activities. If a model sends out a
message, based on the coupling, this message will be
sent across the network and put to another model’s input
port. Again, with model continuity, all the subsystems
will work and cooperate as were simulated.

5. SIMULATION AND TESTING OF
DISTRIBUTED REAL TIME SYSTEMS

Distributed real time system is inheritly complex because
the functions of the system are carried out by distributed
computers over network. With our approach to model the
whole system as a large coupled model, this model can be
simulated and tested in our simulation framework. To
enable simulation, environment model and
sensor/actuator SimActivities are developed to simulate
the real environment and sensor/actuator hardware. In
this section, three different simulation methods are shown
to give a step-wise simulation and testing of the models.
These methods are central simulation, distributed
simulation and hardware-in-the-loop simulation. To help
to understand these methods, an example distributed real
time system with two network nodes (two component
models) is shown in Figure 4.

The first step is central simulation. In central simulation,
the two models and environment model are all in one
computer. Fast-mode simulator and real-time simulator
are chosen to simulate and test the model respectively. As
fast model simulation verifies system’s logic behavior,
real time simulation verifies system’s temporal behavior.

As central simulation test models’ logic and temporal
behavior in one computer, it doesn’t consider the network
effect such as network delay. There are two ways to take
account of this network factor. One way is to model the
network and add the network model into central
simulation. Another way is to run simulation over the real
network. We adopt the second way to conduct distributed
simulation of the system. In order to conduct a

meaningful testing, the network the simulation is running
should be the same or at least similar to the network the
model will be really executed. As shown in figure 4, in
distributed simulation, two models stay on two different
computers. The environment model may stay on another
computer or on the same computer as one of the models.
The coupling between these computers remains the same,
but it happens across the network. All of these models are
simulated by real time simulators. These real time

simulators take care of the underline network

Figure 4: Simulation of Distributed Real Time
System

communication so it is transparent to the model. As such,
there is not need to change the model for network
communication.

In distributed simulation, the real network is
included so the system is simulated and tested over the
real network. To further this test, real hardware the model
will be executed can also be included into our simulation.
This is the hardware-in-the-loop (HIL) simulation. In HIL
simulation for distributed real time systems, one or more
models can be distributed to their hardware to be
simulated and tested. In the example of Figure 4, Model 1
along with its real-time execution engine stays on the real
hardware. Model 2, environment model and their real
time simulators stay on other computers. These models
still keep the same coupling. However, the model on real
hardware may use some or all of its sensor/actuator
hardware to interact with the real world. Similar to the
description in section 3, different configuration can be
applied to test different aspects of the model.

After all these simulations, we have confidence that
the distributed system will operate as we simulated. Then
the models are mapped to the real hardware for
execution. In real execution, DEVS real-time execution
engine executes the model and take care of the underline

Environment
Model

DEVS Fast-Mode/Real-Time Simulator

Step 1: Central Simulation:
Verify Model Logical and

Temporal Behavior

Model1 Model2

Model Coupling

Environment
Model

DEVS Fast-Mode/Real-Time Simulator

Step 1: Central Simulation:
Verify Model Logical and

Temporal Behavior

Model1Model1 Model2Model2

Model Coupling

Environment
ModelModel1 Model2

Model Coupling

Real-Time
Simulator

Real-Time
Simulator

Real-Time
Simulator

Network Connection

Step 2: Distributed Simulation:
Verify Model in Distributed

Environment

Environment
ModelModel1Model1 Model2Model2

Model Coupling

Real-Time
Simulator
Real-Time
Simulator

Real-Time
Simulator
Real-Time
Simulator

Real-Time
Simulator

Network Connection

Step 2: Distributed Simulation:
Verify Model in Distributed

Environment

Environment
ModelModel1 Model2

Model Coupling

DEVS Real-Time
Execution Engine

Real-Time
Simulator

Real-Time
Simulator

Network Connection

Step 3: Hardware-in-the-Loop
Simulation: Test Model in Real

Hardware

Environment
ModelModel1 Model2Model2

Model Coupling

DEVS Real-Time
Execution Engine

Real-Time
Simulator
Real-Time
Simulator

Real-Time
Simulator

Network Connection

Step 3: Hardware-in-the-Loop
Simulation: Test Model in Real

Hardware

Step 4: Real Execution:
Interact with Real World

Model1 Model2

Model Coupling

DEVS Real-Time
Execution Engine

Network Connection

DEVS Real-Time
Execution Engine

Step 4: Real Execution:
Interact with Real World

Model1 Model2

Model Coupling

DEVS Real-Time
Execution Engine

Network Connection

DEVS Real-Time
Execution Engine

network communication. The environment model is gone,
as all models interact with the real environment.

6. EMPLOYING EXPERIMENTAL
FRAMES FOR TESTING

In previous sections, we have shown that simulation
methods can be applied to test distributed or non-
distributed real time systems in an incremental fashion. .
We have discussed a testing methodology that consists of
an environment model and SimActivities in which
control logic can be tested. Since such testing mainly
focus on the interaction between the environment model
and control model, a more general testing environment
can be developed using the concept of experiment frame.
An experimental frame is a specification of the conditions
under which a system is observed or experimented with
[3]. A typical experimental frame has three types of
components: generator, which stimulates the system
under investigation in a known, desired fashion;
acceptor, which monitors an experiment to see that
desired conditions are met; and transducer, which
observes and analyzes the system outputs. In the context
of real time software design and test, an experimental
frame acts as a test module to serve the functions of a test
event generator, test monitor and performance analyzer.
The real environment in which the application is
embedded is usually modeled and included in the
experimental frame. A related example can be found in
[8].

With the experimental frame concept, the example
shown in Figure 4 to test a distributed system can be
generalized as shown in Figure 5. Here, experimental
frame replaces the environment model to provide a more
general and powerful testing environment. The
environment model is still needed inside the experimental
frame to interact with control model. However, more
special generators can also be added into the
experimental frame to provide special case test. Notice
that with experimental frames, not only can the control
logic be tested and validated, but also the performance of
the model, such as average response time, can also be
measured by using a transducer. Moreover attributes of
intelligent behavior can be captured through specialized
experimental frames and tested in the various phases of
development.

Figure 5: Testing of Distributed Real Time
System Using Experimental Frame

In order to maintain model continuity, special

attention has to be paid when introducing a test module to
conduct testing. For example, in section 2 and 4,
SimActivity has been introduced and we require that a
SimActivity should have the same interfaces as an
Activity. Similar restrictions are also needed when
experimental frames are integrated into the system for
model testing so that model continuity can be maintained.

7. CONCLUSION
Separation of models and simulators as distinct,

though interacting, elements, supports model continuity.
This means that the same model may be handled by
different simulators appropriate to the design, testing, and
execution phases of intelligent system design. Continuity
of the control logic model is particularly important for
design of real time, distributed intelligent systems,
whose complexity would otherwise overwhelm the
designers. Modeling and simulation environments, based
on the DEVS formalism, can support such model
continuity. An example in robotic system design has been
developed and will be discussed in future papers.

Experiment
Frame

DEVS Fast-Mode/Real-Time Simulator

Step 1: Central Simulation:
Verify Model Logical and

Temporal Behavior

Model1 Model2

Model Coupling

Experiment
Frame

DEVS Fast-Mode/Real-Time Simulator

Step 1: Central Simulation:
Verify Model Logical and

Temporal Behavior

Model1Model1 Model2Model2

Model Coupling

Experiment
FrameModel1 Model2

Model Coupling

Real-Time
Simulator

Real-Time
Simulator

Real-Time
Simulator

Network Connection

Step 2: Distributed Simulation:
Verify Model in Distributed

Environment

Experiment
FrameModel1Model1 Model2Model2

Model Coupling

Real-Time
Simulator
Real-Time
Simulator

Real-Time
Simulator
Real-Time
Simulator

Real-Time
Simulator

Network Connection

Step 2: Distributed Simulation:
Verify Model in Distributed

Environment

Experiment
FrameModel1 Model2

Model Coupling

DEVS Real-Time
Execution Engine

Real-Time
Simulator

Real-Time
Simulator

Network Connection

Step 3: Hardware-in-the-Loop
Simulation: Test Model in Real

Hardware

Experiment
FrameModel1 Model2Model2

Model Coupling

DEVS Real-Time
Execution Engine

Real-Time
Simulator
Real-Time
Simulator

Real-Time
Simulator

Network Connection

Step 3: Hardware-in-the-Loop
Simulation: Test Model in Real

Hardware

Step 4: Real Execution:
Interact with Real World

Model1 Model2

Model Coupling

DEVS Real-Time
Execution Engine

Network Connection

DEVS Real-Time
Execution Engine

Step 4: Real Execution:
Interact with Real World

Model1 Model2

Model Coupling

DEVS Real-Time
Execution Engine

Network Connection

DEVS Real-Time
Execution Engine

8. REFERENCES
[1] Lee, E.A., “What’s Ahead for Embedded Software”
IEEE Computer, Volume: 33 Issue: 7, Sep 2000.
[2] Pimentel, A.D.; Hertzbetger, L.O.; Lieverse, P.; van
der Wolf, P.; Deprettere, E.E. “Exploring embedded-
systems architectures with Artemis” IEEE Computer
Volume: 34 Issue: 11, Nov. 2001
[3] Zeigler, B.P., T.G. Kim, and H. Praehofer, Theory of
Modeling and Simulation. 2 ed. 2000, New York, NY:
Academic Press
[4] Slan C. Shaw, Real-time Systems and Software, 2001,
John Wiley & Sons
[5] J.S. Hong, and T.G. Kim, “Real-time Discrete Event
System Specification Formalism for Seamless Real-time
Software Development,” Discrete Event Dynamic
Systems: Theory and Applications, vol. 7, pp.355-375,
1997.
[6] Feijun Song; Folleco, A.; An, E., “High fidelity
hardware-in-the-loop simulation development for an
autonomous underwater vehicle” OCEANS, 2001.
MTS/IEEE Conference and Exhibition, Volume: 1 ,
2001
[7] Wells, R.B.; Fisher, J.; Ying Zhou; Johnson, B.K.;
Kyte, M., “Hardware and software considerations for
implementing hardware-in-the-loop traffic simulation “
Industrial Electronics Society, 2001. IECON '01. The
27th Annual Conference of the IEEE , Volume: 3 , 2001
[8] Schulz, S.; Buchenrieder, K.J.; Rozenblit, J.W.
“Multilevel testing for design verification of embedded
systems” IEEE Design & Test of Computers
Volume: 19 Issue: 2 , March-April 2002

